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Abstract. We investigate the retrieval phase diagrams of an asynchronous fully connected
attractor network with non-monotonic transfer function by means of a mean-field approximation.
We find for the noiseless zero-temperature case that this non-monotonic Hopfield network can
store more patterns than a network with monotonic transfer function investigated byefmit

al. Properties of retrieval phase diagrams of non-monotonic networks agree with the results
obtained by Nishimori and Opris who treated synchronous networks. We also investigate the
optimal storage capacity of the non-monotonic Hopfield model with state-dependent synaptic
couplings introduced by Zertuchet al We show that the non-monotonic Hopfield model

with state-dependent synapses stores more patterns than the conventional Hopfield model. Our
formulation can be easily extended to a general transfer function.

1. Introduction

Statistical mechanical approaches were successful for the investigation of equilibrium
properties of associative memories or attractor networks. The Hopfield model [1, 2] which
updates its state asynchronously was investigated from a statistical mechanical point of view
by Amit et al [3,4], and a lot of interesting features were found. One of the main issues
about the Hopfield model as an associative memory device is the critical storage capacity.
Amit et al [3] showed that the Hebbian learning in the Hopfield model leads to the optimal
storage capacity, = p/N = 0.138, wherep is the number of embedded patterns avid

is the number of neurons. Fontanari andbérle [5] extended the method of Anst al

to the synchronous networks and showed that the capacity remains thexsam®.138

and derived finite-temperature properties of synchronous networks. On the other hand, we
cannot obtain information on the dynamical process of retrieval by equilibrium statistical
mechanics.

Amari and Maginu [6] proposed a signal-to-noise ratio analysis to investigate the
dynamical properties of synchronous networks. They divided the time-dependent local
field hf = (1/N)); >, &6/ '0;(r) into a signal parin,, which corresponds to the first
(v = 1) term in the summation over, and a noise contributiov; corresponding to
the rest 1 # 1). They assumed that the time-dependent noise term obeys the Gaussian
distribution during the dynamical processes and showed that the capaeity=s0.159.
Nishimori and Ozeki [7] pointed out by Monte-Carlo simulations that the assumption of a
Gaussian distribution of the noise term is valid at least within statistical uncertainties if the
final retrieval is successful. And they extended the Amari—-Maginu theory to the network
which updates its state stochastically and investigated the properties of the Hopfield network
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at finite temperatures. The phase diagram obtained as the equilibrium limit of the extended
Amari—Maginu dynamics is very similar to the phase diagram of Aehil [3, 4].

The limitation of storing patterns in Hopfield networks comes mainly from the Hebbian
interactionsJ;; = (1/N) }_/_, &&". In fact, Gardner [8-10] showed, in her pioneering
papers, that the optimal storage capacityis 2 for the general interactiod;;. Many
attempts have been made to increase the storage capacity of the Hopfield model to Gardner’s
limit o, = 2 by taking more complex synapses. Recently Zertuehal [11] studied
the storage capacity of the Hopfield model with state-dependent synapses by introducing
a threshold parametey. This parametern determines which patterns contribute to the
synapses. This synapse can be written/as= (1/N) 3", éf‘éj‘@(mi —n?/N). In their
model, only patterns whose correlation with the state of the networks is greater or equal to
the threshold are left finite to give a Hebbian contribution to the synapses. The capacity of
the Hopfield network with this type of synapses is found to increadeom 0.138 to 0.171
at7 =0 andn = 1.0.

Nishimori and Opris [12] investigated the retrieval properties of an associative memory
with a general transfer function using the extended Amari—Maginu theory [7]. They obtained
the optimal storge capacity for the non-monotonic transfer function by taking the equilibrium
limit of the recursion relation of the Amari—-Maginu dynamics and showed that networks with
non-monotonic transfer functions yield an enhanced memory capacity than the conventional
monotonic relation. This property of non-monotonic neural networks was also pointed out
by Morita et al [13] by Monte-Carlo simulation before Nishimori and Opris [12]. The
reason why the optimal storage capacity of a non-monotonic transfer function increases is
that a weak value of the total input to a neuron implies a confused state and an inverted
output for a weak input might work as a trial toward an improved retrieval.

In this paper we investigate the retrieval phase diagram of Hopfield networks which
update asynchronously and have a non-monotonic transfer function by a mean-field theory
of statistical mechanics proposed by Geszti [14, 15]. In section 2 we show the formulation
of the mean-field approximation to the asynchronous Hopfield networks with non-monotonic
transfer function and equations of state are derived. In section 3 we extend our formulation
to networks with a general type of transfer function. In section 4 we study the performance
of non-monotonic Hopfield networks when their synapses depend on the state of networks
using the method proposed by Zertuakteal [11]. In section 5 we compare the results of
our calculations with the results obtained by Nishimori and Opris [12].

2. Equations of state

Most of the investigations which discussed equilibrium properties of fully connected
Hopfield networks by statistical mechanics were restricted to networks with equilibrium
free energy. In order to show the existence of such free energy, we must make sure that
the synaptic couplings are symmetric and the transfer function is monotonic. Our model in
this paper has symmetric couplings, but the transfer function is non-monotonic. In order to
overcome this difficulty we use the mean-field approximation as follows.

Let us suppose that th¢h neuron updates its state according to the probability [7]

Prolio; (t + 1) = 3[1+ 01t + 1) f (k)] (1)
whereo; = +1, §/ = £1, and the local field to théth neuronk! is defined as
1
hi= DD & o), @)

FETam
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Figure 1. The stepwise-type non-monotonic transfer function.

Then we can calculate the average valueraf + 1) as
(01 + 1) = (+1) x S[1+ GBI+ (=) x 3[1 = fHD] = f(hD.  (3)
For the equilibrium state we obtain the equation of state by mean-field approximation [14]

as
1
o1 =1y DX e o) @
J 123
In this section we choose the functigitx) as

f(x) =tanh(—B(x + a)) + tanh(—B(x — a)) + tanh(Bx) %)

wherea is a positive constant anél is a parameter related to the synaptic noise. This non-
monotonic transfer function reduces to the form in figure 1 in the lignie 1/T — ooc.
Then equation (4) can be rewritten explicitly as

(0;) = tanh[ _ % ZZEillst(Uf) — ,361:| -|-tanh[ — % ZZE[MSJH(UJ) +,3ai|
j on J K

+tanh[f’ ZZ%M%&(QI.)} (6)
T

We introduce the overlap between the equilibrium state of the netwpyland an embedded
patternv as follows:

mz;Zam» %

Using this overlap parameter, we may rewrite (6) as
m, = % Xi:gi“{ tanh[ﬁ( - ;(Ei"m,l + a)i| + tanh[ﬂ( - ;gi"mﬂ - a):|
—i—tanh[ﬂ Zs}‘} } (8)
7

We divide the termzu &"'m, appearing above into three parts: the first foe= 1 (# v)
which corresponds to the retrieved state, the second corresponding to the term and
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the rest. Then we get

m, = —% lZs;s,-l tanh[ﬂ(ml +&/8m, + ;;u &' &tm, — a)}

—% Xl: £E taﬂh[ﬁ(ml + &8 m, + M;y g'gtm, + a)}

+% Z g&} tanh[ﬂ (my + &' &lm, + ,;U s;‘s,-lm,o] ©)
Here,m is of order 1, and the summation ,; , g/'¢1m,, is also of order 1, while the term

g’&m, is much smaller@®(1/+/N). Then we may expand the function tanh appearing in
(9) to first order ofgi”silmv. The termszu 21 gi"g}mﬂ appearing in tanh may be regarded
as Gaussian variables with mean zero and varignge, ,m% = ar [14]. Under this
approximation, we may replace the summati@pN) )", by a Gaussian integral. We next
square the equation (9) to calculate- Zv#lmvz/a. Following the procedure introduced
by Gesti [14], we obtain the equations of state in the limitz\of> oo as follows:

r=[1-p@s+q-—q—D]? (10)

and

m = —/Dz tanhB(m + Varz — a)] — / Dz tanh[B(m + arz + a)]

—i—/ Dz tanhB(m + Varz)] (11)
where we setn; = m and introduced the Edwards—Anderson-like [16] order parameters

qg= / Dz tantf[B(m1 + arz)] (12)

gs = / Dz tant[B(m + arz £ a)]. (13)

In the zero-temperature limit, these order parameters can be rewritten as

=1 2_ expl -2 14

121 rargz () 4
_ 2 (m £ a)?

‘Ii—l‘\/ymrﬁzex‘)(‘zar>' (19)

Then equations of state lead to

2
2 Y 2

r = |:1+ li {exp<_(m+a)> +exp<_(ma)) +exp(_m>}:| (16)
Tar 2ar 2ur 2uar

and

m:—mf(%)—erf(nj/%)Jrerf(\/%) (17)

where

erfc(x) = 1 — erf(x) = \/ZE /oo dr exp(—1?). (18)
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Figure 2. Phase diagram for the non-monotonic transfer function in figure 1 obtained by
the mean-field approximation. Retrieval is successful in the region R (normal retrieval) and
unsuccessful in N/Rx.(a = oo) = 0.138 (consistent with Amiet al) anda,(a = 1.77) = 0.211
(maximum value).

Fora — oo one recovers the equations of state of the Hopfield mod&l &t 0 obtained
by Amit et al [3, 4]].

The neural network is useful as an associative memory as long as the mean-field
equations (10) and (11) have a solution of the fosp= (m, 0, ..., 0, 0) with m # 0. At
T = 0, there exist metastable states which are highly correlated with particular embedded
patterns as long ap = aN < a.N. We solved equations (16) and (17) numerically and
obtained the critical capacity,. This result is plotted as a function of the parameten
figure 2. In this phase diagram, the region R denotes the retrieval phase and the region
N/R means the non-retrieval phase where the self-consistent equations (16) and (17) do not
have a non-zero solution @t. From this result, we see that Hopfield networks with non-
monotonic transfer function store more patterns than the networks with monotonic transfer
function [3]: «,. has the maximum value 0.211 at= 1.77. The shape of the.(a) curve
has similar properties, in the following sense, with that of Nishimori and Opris [12] who
calculated this critical curve by the equilibrium relation of Amari-Maginu dynamics for
synchronous networks:

e There exists a certain value afthat maximizesy,.

e o, approaches the monotonic value (0.138 in the present case) in the: limibo.

An interesting observation is that an iterative solution of the self-consistent
equations (16) and (17) showed oscillatory behaviour in a restricted region asotnd
anda = 0 in the phase diagram. In consideration of similar observations from dynamical
treatments [12], such a phase should be characterized by time development of the overlap
m, in the sense thak,.; > 0 if m;, < 0 andm,,; < O if m; > 0. However, we should
be warned that, strictly speaking, as we treat the static properties of the non-monotonic
Hopfield model, we cannot extract the dynamical behaviour:pfrom our formulation.

Next, in order to get thev—T phase diagram, we solved the finite-temperature self-
consistent equations (10) and (11). For the case ef 1.80 we plotted thex—T curve
in figure 3. We have found that the transition from the (normal) retrieval phase to the
spin-glass phase is of first order.
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Figure 3. Thea—T phase diagram of the Hopfield model with non-monotonic transfer function
(e = 1.80). Retrieval is successful in R (retrieval phase) and unsuccessful in SG (spin-glass
phase).

3. Extension to a general transfer function

In this section we show that our formulation can be extended to the networks with a general
transfer function [12]. The mean-field equation of state for a general transfer fungtion

is already given in (4). Equation (9) of the parametgrcan be rewritten for this general
transfer function as follows.

m= e (S ). (19)

Here we have included the effect of the control paramgiezorresponding to the thermal
noise, in the general functiofi. We should not forget that the absolute value of the function

f does not exceed 1 because otherwise probabilistic interpretation (1) does not make sense.
For the general transfer functiofi, we can obtain the equations of state in the same way

as in the previous section. The result is

and
m =sz f(m+ Jarz) (21)
where
Qo= [ Dz s+ Vara) (22)
0= / Dz f'(m + arz). (23)

Note that by settingf (x) = tanh(8x) we recover the result by Amit al [3].

We next show that our equations of state for the general transfer function are different
from the result of Nishimori and Opris [12]. They calculated the recursion relations
of macro-variablesn, and o, (the latter being the measure of disturbance from non-
retrieved patterns) by generalizing the Amari—-Maginu-type signal-to-noise ratio analysis
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[6] to stochastic dynamical process in the case of synchronous dynamics. Their result is

miy1 = / Dz fm; +o0:2) (24)

a,2+1 = o + 2am;m,; 1 h(m,, o;) + a,zhz(m,, ;) (25)

whereh is defined by
h(m;, 07) = / Dz f/(mt +012). (26)

Taking the equilibrium limit — co and settingro, = +/ar andm,, = m, we get equations
of state with respect tm andr as

m = / Dz f(m + Jarz) (27)
1+ am?h(m, J/ar)

= 28
[1— {(h(m, Jar)P] (28)

where
h(m, Jar) = / Dz f'(m + Jarz). (29)

This is different from our result (20) and (21). We may suppose that this difference comes
from the difference between synchronous and asynchronous dynamics. Ther jsion
reason why the equilibrium properties of synchronous networks should coincide with those
with asynchronous networks.

4. State-dependent synapses

As long as the number of embedded patterns satisfiesk N, the noise term
Zugél,vsiugiﬂmﬂ appearing in the mean-field equation is of ord®¢l/N) and we can
neglect this term. However, ip = aN with « finite, this same term become&3(1) and
this contribution cannot be neglected. These non-retrieved menidtigs # 1, v), which
appear iny_ ., , &"&/'m,, prevent networks from retrieving the embedded pattern. The
storage capacity of the Hopfield model is limited by the contribution of a large number of
weakly correlated patterns. For the conventional Hopfield model, pat{etisare stored
by the Hebbian-type synaptic interactiofy = (1/N) Zu g;‘g}‘. Therefore, in order to
exclude non-retrieved memories which have small overlaps with the state of the network,
we should modify the synaptic interaction so that only patterns with large overlaps with
state contribute to the Hebbian rule [11]. Our main interest in this section is to what degree
the stability of the memorized states is improved by this state-dependent synaptic interaction
[11,17] and how many patterns are stored in the Hopfield networks with non-monotonic
transfer function.

We use the next state-dependent synapses by introducing a threstel@) [11]:

1 2 n?
Iy = % Yeketo (m - N) | (30)
n

The factor of the step functio®(x) means that an embedded pattérhis excluded if

the overlap between the pattern and network stateis below a thresholdni < n?/N.

We expect that the performance of a network as an associative memory is improved by
introducing this type of synapses with threshagld- O to exclude the spurious memories
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disturbing retrieval. We introduced the factofM becausen, is of order YJ/N. ltis
important to bear in mind that the conventional Hebb interactign= (1/N) ZM glglf

is recovered by setting = 0. Using this coupling, we rewrite the mean-field equation
obtained in section 2 as follows:

2
my = % lZEivgiltanhW(m + 1)1+ pm,© (mf - ?v) % Z[l —tanif B(m + n")]
LY e tanhon £ o )
2
—Bm,O (mﬁ - )]7\/) % X;:[l —tanlf B(m + n* — a)]

1
— 2 & & @nhBon + ' + )]

2
- 2_ M) 1§y z
Bm,® (m N) v Z[l tantf B(m + n* + a)] (31)
where we introduced* as follows:
772
2= Y Eetm,o (m,a - N). (32)
n#Lv

This is the sum of a large numbet @N) of small terms (of order AN). We now assume

that the small contributions:,, (« # 1) have identical Gaussian distributions centred at
zero, with variancer?/N. Strictly speaking, this statement is not exact becauseare
related through (31). Nevertheless we accept this approximation in this paper. By the same
argumentsgj" is assumed to have a Gaussian distribution with variancend average

zero, so that

ar = ((11)?). (33)

We also introduce the Edwards—Anderson like order parameters [16] as

= % > tantt Bom + 5l = / Dz tantf B(m + Varz) (34)

s = % > tank Bom + il £a) = / Dz tantf f(m + Varz £a).  (35)

Using these parameters, (31) leads to

772

1
m, [1 —Blg++q-—q—1O (mf - N)] =V lZs,-“s}tanh[mm + )]

—% > &gt tanhBon + 0! — a)]
1
— 2 & & @nhBon + i + o). (36)

Squaring this expression and averaging it over the distribution of patterns, we get

o’ +{[1-Bgr+q-—qg-D*r=1 (37)
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Equations (32) and (33) lead to

2 oo dZ NZZ n2
- 29 (m2 = 1)) = / o= “ ) 2e(2-T). (38
o« P <<m“ mM N P —00 27T02/N exp 262 ¢ ¢ N ( )
Using the transformatiovz2/202 = ¢, we find

14 2 2/00 _1 2 , 3 772
=2 = tTzexp—t)dt=a—0T |2, =5 |- 39
“ N(ﬁ)” PPV A FiF =)

The final expression of is
2 , (3 n?
r= —ﬁa r <2, 202) (40)

whereT is the incomplete gamma function defined as
I'(z, p) = / exp(—n)t*~tdr. (41)
p

Another equation is obtained far by takingu = 1 in (31) in the limit§ — oco. This
result agrees with (11) in section 2. The tefty, + ¢— — g — 1) appearing in (37) leads
in the limit 8 — oo to

C=B@G++q-—q—-1

]2 ox (_(m+a)2>+ex _(m—a)? Cex (_m2
N ar P 2ar P 2ar P chr) '

(42)
Finally we have the equations of state as follows:
P +[1-0P¢-1r=1 (43)
2 , (3 n?
=—0T |5, 55 44
Y24 <2’ 202) (44)
m—a m-+a m
m=—erfl —— | —erf{ — +erf<>. 45
(«/20{;’) («/2ar> 2ar (43)
For simplicity we use a variable defined by
1
k= ?37” _1 (46)
F(és ?)
Equations (43), (44) and (46) are written as
1
= 47
"TA-0rrk (1)
1+k
2 i (48)

T T A=-02+k

Forn = 0, one hask = 0 and from (43), (44) and (46) one recovers the equations for the
non-monotonic Hopfield model & = 0 discussed in the previous section.

We evaluated equations (45), (46) and (43) and obtained the optimal storage capacity
a.. We show the results fag, as a function ofy for the casel’ = 0, a = 3.0 in figure 4.
A similar result is plotted in figure 5 for the case &f = 0 anda = 1.80. We also
show the parameter-dependence of the capacity. for the cases of; = 1.0, 0.8 and
0.6 in figure 6. From this figure we see that as the threshold paramétereases, more
patterns can be embedded by the modified Hebbian rule (30). It is observed how the storage
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Figure 4. A slice of the phase space for the non-Figure 5. A slice of the phase space for the non-
monotonic networks with thresholg at 7 = 0 and monotonic networks with thresholg at 7 = 0 and

a = 3.0. The Hopfield valuex, = 0.138 is found at a = 1.8.

n = 0; for a threshold; equal to 1 the optimal capacity

increases ta, = 0.171.

04 T 1

0.3+

O o2

0.1+

Figure 6. Optimal storage capacity. (a) of the non-monotonic network with thresholgls= 1.0,
0.8 and 0.6 af" = 0.

capacity of the non-monotonic Hopfield networks is improved as the valuginéreases

from n = 0. Therefore using the neural networks with non-monotonic transfer function
and state-dependent synapses, we can get an associative memory with the high-quality
performance. We also show the overlapas a function ofw for the case of; = 0.80,

a =3.00 andT =0, =0.80,a = 1.60 andT = 0 in figures 7 and 8, respectively. From
these figure®: («) is seen to drop to zero discontinuously at the critical capagity 0.155

for a = 3.0 anda, ~ 0.257 fora = 1.6.

5. Discussion

We have investigated the retrieval phase diagrams by the mean-field approximation [14]
in the Hopfield networks with asynchronous dynamics. Mean-field approximation was
extended to the general type of transfer function. The result shows that a non-monotonic
transfer function yields an enhanced memory capacityefaround 0.211. This confirms

the claim of Moritaet al [13] who used the numerical simulation for synchronous dynamics
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Figure 7. The order parameten(x) at 7 = 0 and Figure 8. The order parameten(x) at 7 = 0 and
n = 0.80 anda = 3.00. n = 0.80 anda = 1.60.

and the result of Nishimori and Opris [12] who used the equilibrium relation of the Amari
and Maginu [6] dynamics for synchronous dynamics. The properties of the phase diagram
obtained in this paper qualitatively resemble those of the phase diagram of the synchronous
neural networks. It is interesting that our calculation for the asynchronous network also
showed the enhancement of the capacity as in the synchronous case: the shape of the
retrieval phase diagram in this paper is similar to that of Nishimori and Opris [12]. A
difference is that within our formulation of the asynchronous networks, the oscillatory phase
(limit-cycle phase) found by Nishimori and Opris was not obtained clearly. This phase is
characterized by the behaviour of the dynamical order paramgt&rhich ism, 1 > O if

m,; < 0 andm,,1 < 0 if m, > 0 in the range of O< @ < 1. As we used the equilibrium
statistical mechanics to get the phase diagram of the non-monotonic Hopfield model, we
cannot draw definite conclusions about the dynamical order parameter

For the non-monotonic Hopfield model, the property of asynchronous dynamics is an
open problem. However, the oscillatory behaviour during the process of recursion-type
solution of equilibrium equations of state may be related to the dynamical oscillatory phase
found in the same region of the phase diagram.

We extended our formulation to the general transfer function in this paper. It is
interesting to investigate whether the storage capacity is enhanced by a transfer function
which has a different shape from the stepwise-type one. For the moment, we could not find
better transfer functions than the stepwise-type one. And we also showed that the Hopfield
network with non-monotonic transfer function and state-dependent couplings can store a
large number of patterns. From these results one can confirm that the limit of an associative
memory with the Hebb-type interactions consists in the effects of spurious states each of
which has a small correlation with embedded patterns.

We may be able to find a new type of network which shows better performance than
the conventional one by introducing non-monotonic transfer function and state-dependent
synapses.
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of Hopfield networks and the Amari—-Maginu theory.
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